Newton Chinese Language School

Math 9 Spring 2019 Final Exam 6/16/2019 Name: \qquad
(5 points each, unless otherwise noted)

1. If r and s are roots of $3 x^{2}-16 x+12=0$, find $\log _{2} r+\log _{2} s$.
2. If $c=\log _{y} b, c \neq 0$, and $d=2 \log _{y^{3}} b^{3}$, then find $\frac{d}{c}$.
3. Evaluate the following:
(a) $\log _{3} 27^{2007}=$ \qquad (b) $\log _{2} \frac{2}{3}+\log _{2} 6=$ \qquad
(c) $\log _{2 \sqrt{2}} 16=$ \qquad
(d) $\left(\log _{2} 5\right)\left(\log _{5} 12\right)+\left(\log _{2} 7\right)\left(\log _{7} \frac{8}{3}\right)=$ \qquad
4. Find all t such that $2 \log _{3}(1-5 t)=\log _{3}(2 t+5)+2$
5. Solve the equation $4^{x-3}-8^{x+5}=0$
6. Solve the equation $9^{2 x+1} * 27^{-x}=\left(\frac{1}{3}\right)^{5}$
7. $P Q R S$ is a parallelogram. H and K trisect the diagonal $P R . ~ M$ is the midpoint of RS. $\overrightarrow{Q P}=u, \overrightarrow{Q R}=v .(3$ pts each $)$

a. Express the following in terms of u and v :
$\overrightarrow{P R}$
$\overrightarrow{Q K}=\quad \overrightarrow{Q H}$
$\overrightarrow{Q M}$
b. What is the relationship between $\overrightarrow{Q K}$ and $\overrightarrow{Q M}$?
8. In the diagram, $O A B C$ is a parallelogram and D is the midpoint of $B C$. $B E$ and $O C$ produced intersect at the point $\mathrm{F} . \mathrm{BE}: \mathrm{BF}=1: 3$ and OC : $O F=1: 2$. Let $\overrightarrow{O A}=\boldsymbol{a}$ and $\overrightarrow{O C}=\boldsymbol{c}$.
Express in terms of a and \mathbf{c} : (3 pts each)

$$
\begin{array}{ll}
\overrightarrow{A C}= & \overrightarrow{B F}= \\
\overrightarrow{O D}= & \overrightarrow{O E}= \\
\hline
\end{array}
$$

9. A loan grows to $\$ 8400$ after 1 year and $\$ 9261$ after 3 years with compound interest that is compounded annually. The interest rate per year is $\mathrm{r} \%$ and remains unchanged in these years. Find:
(a) The value of r \qquad (5 pts)
(b) The original loan \qquad (5 pts)
(c) The total interest in the first 2 years \qquad (4 pts)
10.The diagram shows the speed-time graph of a car during a 60 -second interval

t1 to $\mathrm{t}=60$ is $-\frac{8}{15} \mathrm{~m} / \mathrm{s}^{2}$ \qquad (4 pts)
c. Sketch the distance-time graph of the car during the 60 -second period on the diagram below. (6 pts)

