Exercises

- **13.5.1** Suppose that $\log_{10} xy^3 = 1$ and $\log_{10} x^2y = 1$. What is $\log_{10} xy$? (Source: AMC 12)
- 13.5.2 If $60^a = 3$ and $60^b = 5$, then find $12^{(1-a-b)/[2(1-b)]}$. (Source: AHSME)
- 13.5.3 If $\log_2 p = \log_3 r = \log_{36} 17$, then determine pr. (Source: Mandelbrot) Hints: 67
- **13.5.4** Suppose that a > b > 0. Solve the equation $(a^4 2a^2b^2 + b^4)^{y-1} = (a b)^{2y}(a + b)^{-2}$ for y in terms of a and b.
- 13.5.5 Find all x such that $x^{\log_{10} x} = \frac{x^3}{100}$. (Source: AHSME)

13.6 Natural Logarithms and Exponential Decay

Problems

Problem 13.33: Let $f(n) = \left(1 + \frac{1}{n}\right)^n$ and $g(n) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \dots + \frac{1}{n!}$.

- (a) Evaluate f(1), f(2), f(5), and f(10). (Yes, you can use a calculator on this problem.)
- (b) Evaluate g(1), g(2), g(5), and g(10).
- (c) Use a calculator or computer to evaluate f(n) and g(n) for large values of n. Notice anything interesting?

We start this section by introducing a special constant that, much like π , has a great many uses in mathematics and science.

Problem 13.33: Let $f(n) = \left(1 + \frac{1}{n}\right)^n$ and $g(n) = 1 + \frac{1}{1!} + \frac{1}{2!} + \frac{1}{3!} + \cdots + \frac{1}{n!}$. Use a calculator or computer to evaluate f(n) and g(n) for large values of n. Notice anything interesting?

Solution for Problem 13.33: The table below shows f(n) and g(n) to the nearest 10^{-8} for several values of n.

n	f(n)	g(n)
vinu qui av	2.00000000	2.00000000
2	2.25000000	2.50000000
5 5	2.48832000	2.71666668
10	2.59374246	2.71828180
100	2.70481383	2.71828183
1000	2.71692393	2.71828183
100000	2.71826824	2.71828183
10000000	2.71828169	2.71828183

It looks like both f(n) and g(n) approach constant values as n gets very large. Moreover, it looks like