- **3.2.4** Find the distance between the points 4 + 7i and -3 17i in the complex plane.
- 3.2.5 Show that the midpoint of the segment connecting z_1 and z_2 on the complex plane is $(z_1 + z_2)/2$.

3.2.6

- (a) Find the magnitude of $\frac{1+2i}{2+i}$.
- (b) Find the magnitude of $\frac{6+11i}{11+6i}$. (You can use a calculator for this part.)
- (c) Notice anything interesting? Can you generalize your observations from the first two parts?
- 3.2.7★ Four complex numbers lie at the vertices of a square in the complex plane. Three of the numbers are 1 + 2i, -2 + i and -1 2i. What is the fourth number? (Source: AMC 12)

3.3 Real and Imaginary Parts

Problems

Problem 3.13: Let *z* and *w* be complex numbers.

- (a) Let z = a + bi and w = c + di, where a, b, c, and d are real. Show that $\overline{z + w} = \overline{z} + \overline{w}$.
- (b) Show that $\overline{zw} = \overline{z} \cdot \overline{w}$.

Problem 3.14:

- (a) Show that $\overline{z} = z$ for all complex numbers z.
- (b) Show that $\overline{z} = z$ if and only if z is real.
- (c) Show that $\overline{z} = -z$ if and only if z is imaginary.

Problem 3.15:

- (a) Prove that $z\overline{z} = |z|^2$ for all complex numbers z.
- (b) Prove that |zw| = |z||w| for all complex numbers z and w.

Problem 3.16: Solve the equation $z + 2\overline{z} = 6 - 4i$ for z.

Problem 3.17: In this problem, we find all complex numbers z such that $z^2 = 21 - 20i$.

- (a) Let z = a + bi in the given equation. Find a system of equations involving a and b.
- (b) Solve for *b* in terms of *a* in one of the equations, and substitute the expression you found for *b* into the other equation.
- (c) Solve the equation you formed in part (b) for all possible values of a. Hints: 90
- (d) Find all complex numbers z such that $z^2 = 21 20i$.