19. The diagram shows the speed-time graph of a racing car during an interval of T seconds. At t = 0, the speed of the racing car was 25 m/s. From t = 0 to $t = t_1$, the racing car accelerated at $3\frac{1}{3}$ m/s² until it reached a maximum speed of 45 m/s. The racing car continued to move at 45 m/s between $t = t_1$ and t = 16. From t = 16 to t = T, the racing car travelled 270 m.

Find

- (a) the values of t, and T,
- (b) the speed of the racing car when t = 5,
- (c) the deceleration of the racing car between t = 16 and t = T,
- (d) the value of t when the speed of the racing car is 24 m/s,
- (e) the total distance travelled by the racing car during the T seconds.
- 20. The diagram shows a simplified speed-time graph of a jogger over a period of 10 minutes.

- (a) Find the value of t_1 if the distance covered by the jogger from t = 0 to $t = t_1$ equals the distance covered from $t = t_1$ to t = 10.
- (b) Hence, find
 - (i) the total distance covered by the jogger during the 10 minutes,
 - (ii) the deceleration of the jogger, in m/s², between $t = t_1$ and t = 10,
 - (iii) the speed of the jogger, in m/s, when t = 7.
- (c) A second jogger ran for 12 minutes and covered 5% more in distance than the first jogger. Find the average speed of the second jogger in m/s.