25. In the diagram, \overrightarrow{OAF} is a straight line and \overrightarrow{OF} || \overrightarrow{BE} || \overrightarrow{CD} . The lines \overrightarrow{AC} and \overrightarrow{OD} intersect at \overrightarrow{B} , $\overrightarrow{DE} = 2EF$, $\overrightarrow{OF} = 6OA$, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. - (a) Express each of the following vectors in terms of a and/or b. - (i) \overrightarrow{DF} - (ii) \overrightarrow{BE} - (iii) \overrightarrow{BC} - (iv) \overrightarrow{CF} - (b) Find the ratio of the areas of - (i) $\triangle BCD : \triangle BED$, - (ii) $\triangle OAB : \triangle BED$, - (iii) $\triangle BED : ABEF$. - **26.** In the diagram, F and G are points on the lines AE and BE respectively. The lines BE and CF intersect at D and $AB \parallel FC$. AB : FC = 4 : 9, EF : EA = BG : BE = 1 : 4, $\overrightarrow{AB} = 2\mathbf{q}$ and $\overrightarrow{AF} = 3\mathbf{p}$. - (a) Express each of the following vectors in terms of p and q. - (i) \overrightarrow{EB} - (ii) \overrightarrow{AC} - (iii) \overrightarrow{EG} - (iv) \overrightarrow{AG} - (b) Show that A, G and C lie on the same straight line. - (c) Hence, find the ratio AG : AC. - (d) Find the ratio of the areas of - (i) $\triangle EDF : ABDF$, - (ii) $\triangle EDF : \triangle ABG$.