Challenging Practice

22. In the diagram, a and b are two forces acting on an object that is initially at the spot Z. The bearings of a and b from Z are 010° and 060° respectively, |a| = 40 N and |b| = 60 N.

- (a) The resultant force of a and b is defined as a + b. Find
 - (i) the magnitude of the resultant force,
 - (ii) the bearing of the resultant force from Z. Imag and to rot
- (b) Suppose that a force c is also applied to the object. The new resultant force, $\mathbf{a} + \mathbf{b} + \mathbf{c}$, equals \mathbf{O} where \mathbf{O} is the null vector.
 - (i) Write down the magnitude of c.
 - (ii) Find the direction of c.

- 23. In the diagram, OABC is a square of area 36 units² and BDEF is a rhombus of area 96 units2. OD and CE are straight lines, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$.
 - (a) Find the magnitudes of AD and BD.
 - (b) Express each of the following vectors in terms of a and/or c.
 - (i) \overrightarrow{CE}
 - (ii) \overrightarrow{BD}
 - (iii) \overrightarrow{BF}
 - (iv) \overrightarrow{CF}

- (i) Express \overrightarrow{OZ} in terms of a.
- (ii) Find the magnitude of \overrightarrow{OZ} .
- 24. (a) In the diagram, the diagonals of a parallelogram, ABCD, intersect at M. The position vectors of A, B, C and D with respect to the point O are a, b, c and d respectively. Show that $\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{d}$.

(b) In the diagram, OPXY is a straight line and $\triangle XYZ$ is an enlargement of $\triangle OPQ$ by a scale factor of 3. The area of $\triangle XYZ$ is 180 cm², OP : OX = 1 : 3, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$.

- (i) Express in terms of **p** and **q**, the vectors \overrightarrow{PZ} , \overrightarrow{XQ} and \overrightarrow{QZ} .
- (ii) Find the areas of $\triangle OPQ$ and $\triangle PXZ$.