Challenging Practice 22. In the diagram, a and b are two forces acting on an object that is initially at the spot Z. The bearings of a and b from Z are 010° and 060° respectively, |a| = 40 N and |b| = 60 N. - (a) The resultant force of a and b is defined as a + b. Find - (i) the magnitude of the resultant force, - (ii) the bearing of the resultant force from Z. Imag and to rot - (b) Suppose that a force c is also applied to the object. The new resultant force, $\mathbf{a} + \mathbf{b} + \mathbf{c}$, equals \mathbf{O} where \mathbf{O} is the null vector. - (i) Write down the magnitude of c. - (ii) Find the direction of c. - 23. In the diagram, OABC is a square of area 36 units² and BDEF is a rhombus of area 96 units2. OD and CE are straight lines, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OC} = \mathbf{c}$. - (a) Find the magnitudes of AD and BD. - (b) Express each of the following vectors in terms of a and/or c. - (i) \overrightarrow{CE} - (ii) \overrightarrow{BD} - (iii) \overrightarrow{BF} - (iv) \overrightarrow{CF} - (i) Express \overrightarrow{OZ} in terms of a. - (ii) Find the magnitude of \overrightarrow{OZ} . - 24. (a) In the diagram, the diagonals of a parallelogram, ABCD, intersect at M. The position vectors of A, B, C and D with respect to the point O are a, b, c and d respectively. Show that $\mathbf{a} + \mathbf{c} = \mathbf{b} + \mathbf{d}$. (b) In the diagram, OPXY is a straight line and $\triangle XYZ$ is an enlargement of $\triangle OPQ$ by a scale factor of 3. The area of $\triangle XYZ$ is 180 cm², OP : OX = 1 : 3, $\overrightarrow{OP} = \mathbf{p}$ and $\overrightarrow{OQ} = \mathbf{q}$. - (i) Express in terms of **p** and **q**, the vectors \overrightarrow{PZ} , \overrightarrow{XQ} and \overrightarrow{QZ} . - (ii) Find the areas of $\triangle OPQ$ and $\triangle PXZ$.