Further Practice

- 12. Find the values of the unknowns in each of the following.
 - (a) $(a + b \quad a b) = (-2 \quad 10)$
 - **(b)** $\begin{pmatrix} 7 & 2c + d & 3 \\ 0 & -5 & 17 \end{pmatrix} = \begin{pmatrix} 7 & -6 & 3 \\ 0 & -5 & -c + 3d \end{pmatrix}$
 - (c) $\begin{pmatrix} 9 & 3e+1 \\ 2f & 7 \end{pmatrix} = \begin{pmatrix} 9 & f \\ 7e-1 & 7 \end{pmatrix}$
 - (d) $\begin{pmatrix} w + 2x \\ w x 4 \\ y \end{pmatrix} = \begin{pmatrix} -w + x \\ 4w + x \\ 2w 5x \end{pmatrix}$
- 13. The official reporting and leaving times in a company are 9 a.m. and 5 p.m. respectively. The actual reporting and leaving times of Mr Liew on 5 consecutive working days are represented by the matrices

Reporting time

$$R = \begin{pmatrix} 0850 \\ 0855 \\ 0900 \\ 0905 \\ 0905 \end{pmatrix}$$

Mon

Tue

Wed

and

 $L = \begin{pmatrix} 1650 \\ 1715 \\ 1700 \\ 1710 \\ 1710 \\ 1655 \end{pmatrix}$

Thu

Fri

respectively.

- (a) List the day on which Mr Liew was late for work and left early.
- (b) List the days on which Mr Liew worked more than the official number of working hours.
- 14. The following table shows the prices, in dollars, of two models of printers in three shops.

	Shop A	Shop B	Shop C
Model 1	97	95	100
Model 2	101	105	103

- (a) Represent the data in the above table by a 2×3 matrix **P**.
- (b) In which shop is the price of model 1 printer the lowest?
- (c) (i) Divide the sum of the elements in the second row of $\bf P$ by 3.
 - (ii) Interpret the result in (i).
- **15.** It is given that $\mathbf{A} = \begin{pmatrix} 2 & 3 \\ -5 & -1 \end{pmatrix}$, $\mathbf{B} = \begin{pmatrix} 2 & -4 \\ -2 & 6 \end{pmatrix}$ and $\mathbf{C} = \begin{pmatrix} -1 & 2 \\ 7 & -3 \end{pmatrix}$.

Evaluate each of the following.

(a)
$$A + B + C$$

(c)
$$3A + B + 2C$$

(e)
$$3C - 2(B - 2A)$$

(g)
$$\mathbf{A} + 3\left(\mathbf{C} - \frac{1}{2}\mathbf{B}\right)$$

(b)
$$A - (B + C)$$

(d)
$$-2A + 3B - 5C$$

(f)
$$\frac{1}{2}$$
B + **C** – 4**A**

(h)
$$2\left(\mathbf{A} + \frac{5}{2}\mathbf{B}\right) - 4\mathbf{C}$$