Chapter 4 Vectors in Two members 3

Basic Practice

1. a = h; b = k; c = g; d = j; e = f

- 2. (a) $|\overrightarrow{AB}| = 2$ $|\overrightarrow{AB}| = 3$ is along the negative direction of the y-axis.
 - (b) $|\overrightarrow{CD}| = 1\frac{1}{2}$ \overrightarrow{CD} is along the negative direction of the x-axis.
 - (c) $|\overrightarrow{EF}| = \sqrt{5}$ $\overrightarrow{EF} \text{ is upwards along a line with gradient} = -2.$
 - (d) $|\overrightarrow{GH}| = \sqrt{2}$ $\overrightarrow{GH} \text{ is downwards along a line with gradient} = -1.$
 - (e) $|\overrightarrow{KL}| = \sqrt{2^2 + \left(\frac{1}{2}\right)^2} \approx 2.06$ \overrightarrow{KL} is upwards along a line with gradient = $\frac{1}{4}$.
 - (f) $|\overrightarrow{MN}| = \sqrt{20}$ $|\overrightarrow{MN}| = \sqrt{20}$ is downwards along a line with gradient $= -\frac{1}{2}$.
- 3. (a) $5\frac{1}{2}p$ (b) 2p + 2q (c) p + 2q (d) $1\frac{1}{2}p q$ (e) p 3q (f) $-1\frac{1}{2}p + 3q$ (g) $-2\frac{1}{2}p + 3q$ (h) 2p + 2q
- 4. (a) \overrightarrow{SR} (b) \overrightarrow{SP} (c) \overrightarrow{RP} (d) O (e) \overrightarrow{QP}
- 5. (a) 2p (b) -q (c) p+q (d) -p-q (e) -p+q (f) -2p-q
- 6. (a) $\frac{1}{2}$ **p** (b) $\frac{1}{3}$ **r** (c) $\mathbf{r} + \frac{1}{2}$ **p** (d) $\mathbf{p} + \frac{1}{3}$ **r** (e) $-\frac{1}{2}$ **p** $+\frac{2}{3}$ **r** (f) $\mathbf{p} \frac{2}{3}$ **r**
- 8. (a) (i) $\begin{pmatrix} 6 \\ -15 \end{pmatrix}$ (ii) $\begin{pmatrix} 6 \\ -14 \end{pmatrix}$ (iii) $\begin{pmatrix} 12 \\ -29 \end{pmatrix}$ (iv) $\begin{pmatrix} -5 \\ 12 \end{pmatrix}$
 - (b) $3|\overrightarrow{OP}| \approx 16.2$, $|-2\overrightarrow{OQ}| \approx 15.2$, $|3\overrightarrow{OP} 2\overrightarrow{OQ}| \approx 31.4$, $|\overrightarrow{PQ}| \approx 13$
- 9. (a) Coordinates of B is (4, 6) Coordinates of C is (5, 1)
 - **(b) (i)** $\begin{pmatrix} 1 \\ -5 \end{pmatrix}$ **(ii)** 5.10

- 10. (a) (i) $\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b}$ (ii) $\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b} \mathbf{c}$ (iii) $\frac{1}{2}(\frac{2}{3}\mathbf{a} + \frac{1}{3}\mathbf{b} \mathbf{c})$ (iv) $\mathbf{a} + \frac{1}{2}\mathbf{b} \frac{1}{2}\mathbf{c}$ (v) $\frac{1}{2}(\mathbf{b} \mathbf{c})$ (b) $\overrightarrow{CB} = \mathbf{b} \mathbf{c} = 2\overrightarrow{AD}$
- 11. (a) (i) 3p (ii) -2p (iii) -3q (iv) -2(p+q) (v) -3(p+q)
 - (b) (ii) 2:3

:. AD // CB

Further Practice

- 12. (a) (i) \overrightarrow{LF} and \overrightarrow{CE} (ii) \overrightarrow{EG} and \overrightarrow{FH} (b) (i) 4 cm (ii) 16 cm (c) No. This is because $|\overrightarrow{LF} + \overrightarrow{FH} + \overrightarrow{HJ} + \overrightarrow{JL}| = 0$ cm
- 13. (a) 17 (b) -30 (c) (i) $\begin{pmatrix} 31 \\ 38 \end{pmatrix}$ (ii) 49.0
- 15. (a) \overrightarrow{BD} (b) \overrightarrow{ED} (c) \overrightarrow{A} 16. (a) (i) 13.4 (ii) 6
 (b) $\triangle AOC$ is isosceles. $\angle AOC = 90^{\circ}$.
- 17. (a) $|\overrightarrow{OP}| \approx 6.32$, $|\overrightarrow{OQ}| \approx 8.06$ (b) 25.6° ≈ 8.32
- **18.** (b) $s = \frac{1}{4}$, $t = 1\frac{1}{2}$ (c) (ii) $\overrightarrow{OR} = \frac{1}{2}\mathbf{a}$, $\overrightarrow{BR} = \frac{1}{2}\mathbf{a} - \mathbf{b}$
- 19. (a) 3 (b) $\overrightarrow{AC} = \begin{pmatrix} 8 \\ 16 \end{pmatrix}$, $\overrightarrow{BC} = \begin{pmatrix} 5 \\ 10 \end{pmatrix}$ (c) (i) $\begin{pmatrix} 4 \\ -12 \end{pmatrix}$ (ii) (4, -12)
 - (d) $\binom{12}{4}$
- 20. (a) (i) $\frac{2}{3}$ (a + c) (ii) a + c (b) $\overrightarrow{OX} = \frac{2}{3} \overrightarrow{OY}$ and O are common. $\therefore O, X$ and Y lie on the same line.
- 21. (a) (i) $4\mathbf{p} \mathbf{q}$ (ii) $\frac{1}{3}(14\mathbf{p} + \mathbf{q})$ (iv) $\frac{7}{9}(4\mathbf{p} \mathbf{q})$ (b) $\overrightarrow{QT} = \frac{7}{9}\overrightarrow{QS}$
 - Q, S and T lie on the same line. (c) (i) 7:9 (ii) 4:7 (iii) 4:9