(b) Copy and complete the following table.

n	1	2	3	4	5
G_n					
R_n					
T_n					

- (c) Find, in terms of n, an expression for
 - (i) G_n ,
- (ii) R_{\perp} ,
- (iii) T_n .

- (d) Calculate the values of
 - (i) G_{g} ,
- (ii) R_{11}
- (e) Calculate the value of *n* if $T_n = 552$.
- 18. Let $x = \frac{t-1}{t+1}$ and $y = \frac{2t+1}{2t-3}$.
 - (a) Find the values of x and y when $t = \frac{3}{4}$. Express your answers as fractions.
 - (b) Express t in terms of
 - (i) *x*

- (ii) v
- (c) Hence or otherwise, express y in terms of x.
- 19. (a) Factorise the following.
 - (i) $4x^2 y^2$

- (ii) $4x^2 + 4xy + y^2$
- (b) Hence or otherwise, factorise

$$3(4x^2 - y^2) - 5(4x^2 + 4xy + y^2).$$

- (c) Simplify $\frac{2}{x-3} \frac{7}{x^2 6x + 9}$.
- **20.** Consider the formula $\frac{1}{r} = \frac{2}{p} + \frac{3}{q}$, where $r \neq 0$, $p \neq 0$ and $q \neq 0$.
 - (a) Calculate the value of r when p = 3 and q = -5.
 - (b) Make q the subject of the formula.
 - (c) If $p = \frac{3t+1}{t-1}$ and $r = \frac{t+1}{3t-1}$, express q in terms of t.